Apoptosis and cancer stem cells: Implications for apoptosis targeted therapy

Evidence is accumulating showing that cancer stem cells or tumor-initiating cells are key drivers of tumor formation and progression. Successful therapy must therefore eliminate these cells, which is hampered by their high resistance to commonly used treatment modalities. Thus far, only a limited nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical pharmacology 2010-08, Vol.80 (4), p.423-430
Hauptverfasser: Kruyt, Frank A.E., Schuringa, Jan Jacob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evidence is accumulating showing that cancer stem cells or tumor-initiating cells are key drivers of tumor formation and progression. Successful therapy must therefore eliminate these cells, which is hampered by their high resistance to commonly used treatment modalities. Thus far, only a limited number of studies have addressed the cancer stem cell killing potential of apoptosis targeted therapies and mechanisms of apoptosis resistance in these cells. Apoptosis resistance may involve inherent cellular mechanisms that may change depending on the differentiations status of stem cells and, on the other hand, extrinsic factors provided by the microenvironment such as secreted survival factors, adhesion-mediated apoptosis resistance and hypoxic conditions. In order to metastasize, cancer stem cells from solid tumors have to break free from their primary epithelial sites and resist cell death activation after detachment (anoikis). The induction of an embryonic genetic program causing the transition from an epithelial to a mesenchymal state (EMT) has been implicated in enhanced migration and metastatic spread of tumor cells and may contribute to apoptosis and anoikis resistance. Considering the plasticity of cancer stem cells the question arises whether a particular apoptosis-inducing strategy will be sufficient for eliminating all the cellular appearances of these cells, also taking into account a varying microenvironment. Here, the different mechanisms of apoptosis resistance that may be encountered in the context of cancer stem cell plasticity described thus far are discussed in relation to the efficacy of apoptosis therapies, such as TRAIL, BCL-2 family and XIAP targeted therapies.
ISSN:0006-2952
1873-2968
DOI:10.1016/j.bcp.2010.04.010