Influence of temperature on the structure and dynamics of the [BMIM][PF6] ionic liquid/graphite interface
The influence of temperature on the structure and dynamics of the [BMIM][PF 6 ] ionic liquid/graphite interface has been investigated by molecular dynamics simulations. The performed simulations cover a 100 K wide temperature interval, ranging from 300 K to 400 K. It was shown that the magnitudes of...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2010-10, Vol.12 (37), p.11245-1125 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The influence of temperature on the structure and dynamics of the [BMIM][PF
6
] ionic liquid/graphite interface has been investigated by molecular dynamics simulations. The performed simulations cover a 100 K wide temperature interval, ranging from 300 K to 400 K. It was shown that the magnitudes of density peaks of anions in the vicinity of the surface decrease with increasing temperature while in the case of cations anomalous temperature behaviour of the density profile is observed: the magnitude of the second peak of cations increases with the increase of temperature. To characterize interface dynamics the local self-diffusion coefficients
D
x
of ions in the normal direction to the surface and the residence time of ions in the first and second interfacial layer have been estimated. It was shown that the local self-diffusion coefficients in the vicinity of the surface correlate with the local ion density; the maxima of the function
D
x
(
x
) for the cations (anions) coincide with the regions of reduced cation (anion) density and
vice versa
. Finally, the influence of temperature on the screening potential in the vicinity of a charged graphite surface has been studied. It was shown that the increase of temperature from 300 K to 400 K induces the decrease of the potential drop across the interface that implies the increase of the capacitance of the electrical double layer.
The influence of temperature on the structure and dynamics of the [BMIM][PF
6
] ionic liquid/graphite interface has been investigated by molecular dynamics simulations. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c0cp00220h |