A chimeric vitronectin: IGF-I protein supports feeder-cell-free and serum-free culture of human embryonic stem cells
The therapeutic use of human embryonic stem (hES) cells is severely limited by safety concerns regarding their culture in media containing animal-derived or nondefined factors and on animal-derived feeder cells. Thus, there is a pressing need to develop culture techniques that are xeno-free, fully d...
Gespeichert in:
Veröffentlicht in: | Stem cells and development 2010-09, Vol.19 (9), p.1297-1305 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The therapeutic use of human embryonic stem (hES) cells is severely limited by safety concerns regarding their culture in media containing animal-derived or nondefined factors and on animal-derived feeder cells. Thus, there is a pressing need to develop culture techniques that are xeno-free, fully defined, and synthetic. Our laboratory has discovered that insulin-like growth factor (IGF) and vitronectin (VN) bind to each other resulting in synergistic short-term functional effects in several cell types, including keratinocytes and breast epithelial cells. We have further refined this complex into a single chimeric VN:IGF-I protein that functionally mimics the effects obtained upon binding of IGF-I to VN. The aim of the current study was to determine whether hES cells can be serially propagated in feeder-cell-free and serum-free conditions using medium containing our novel chimeric VN:IGF-I protein. Here we demonstrate that hES cells can be serially propagated and retain their undifferentiated state in vitro for up to 35 passages in our feeder-cell-free, serum-free, chemically defined media. We have utilized real-time polymerase chain reaction (PCR), immunofluorescence, and fluorescence-activated cell sorter (FACS) analysis to show that the hES cells have maintained an undifferentiated phenotype. In vitro differentiation assays demonstrated that the hES cells retain their pluripotent potential and the karyotype of the hES cells remains unchanged. This study demonstrates that the novel, fully defined, synthetic VN:IGF-I chimera-containing medium described herein is a viable alternative to media containing serum, and that in conjunction with laminin-coated plates facilitates feeder-cell-free and serum-free growth of hES. |
---|---|
ISSN: | 1547-3287 1557-8534 |
DOI: | 10.1089/scd.2009.0504 |