Constructing Optimal Instruments by First-Stage Prediction Averaging

This paper considers model averaging as a way to construct optimal instruments for the two-stage least squares (2SLS), limited information maximum likelihood (LIML), and Fuller estimators in the presence of many instruments. We propose averaging across least squares predictions of the endogenous var...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrica 2010-03, Vol.78 (2), p.697-718
Hauptverfasser: Kuersteiner, Guido, Okui, Ryo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers model averaging as a way to construct optimal instruments for the two-stage least squares (2SLS), limited information maximum likelihood (LIML), and Fuller estimators in the presence of many instruments. We propose averaging across least squares predictions of the endogenous variables obtained from many different choices of instruments and then use the average predicted value of the endogenous variables in the estimation stage. The weights for averaging are chosen to minimize the asymptotic mean squared error of the model averaging version of the 2SLS, LIML, or Fuller estimator. This can be done by solving a standard quadratic programming problem.
ISSN:0012-9682
1468-0262
DOI:10.3982/ECTA7444