A ZnO/PET assembly study: Optimization and investigation of the interface region

Zinc oxide thin films are deposited on polyethylene terephthalate (PET) by r.f. magnetron sputtering process from a ceramic target in oxygen–argon plasmas. Structural studies show that the thin films are highly oriented along the (0 0 2) direction of the würtzite phase when the oxygen partial pressu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials chemistry and physics 2010-01, Vol.119 (1), p.158-168
Hauptverfasser: Ben Amor, S., Jacquet, M., Fioux, P., Nardin, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zinc oxide thin films are deposited on polyethylene terephthalate (PET) by r.f. magnetron sputtering process from a ceramic target in oxygen–argon plasmas. Structural studies show that the thin films are highly oriented along the (0 0 2) direction of the würtzite phase when the oxygen partial pressure is lower than 0.2 Pa. The crystallinity is accentuated when the oxygen partial pressure of the sputtering gas is increased from 0 to 0.02 Pa. The composition of the films determined by Rutherford backscattering spectrometry (RBS) varies in a wide range and it is necessary to add a few amount of oxygen in the plasma composition to establish the stoichiometry. The oxygen partial pressure is found to influence also the microstructure and consequently the density of the coatings. Various cold plasmas are used to treat the polymer surface before the deposition of zinc oxide films. Wettability measurements show an increase in the polar component of the PET surface free energy whatever the nature of the plasma used for the treatment. This increase is more obvious with the carbon dioxide plasma. XPS examinations of the CO 2 plasma treated PET surface in optimized conditions show a functionalisation of the polymer surface. The carbon dioxide plasma treatments of PET surface are found to enhance the peeling energy. The adhesion level depends also on the sputtering parameters, mainly the oxygen partial pressure and the r.f. power which influence the coating properties. The zinc oxide/PET interface is studied by XPS at the different stages of deposition and at various take-off angles. AFM observations show a regular growth of zinc oxide layers with smooth topographies on PET films. The different findings obtained from C1s, O1s, Zn2p3/2, Zn3p peaks and Auger Zn L 3M 4.5M 4.5 peak are corroborated and discussed. New chemical bonds between the polymer and the further coming zinc oxide thin layer are evidenced.
ISSN:0254-0584
1879-3312
DOI:10.1016/j.matchemphys.2009.08.042