Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents
Graphene, functionalized with oleylamine (OA) and soluble in non-polar organic solvents, was produced on a large scale with a high yield by combining the Hummers process for graphite oxidation, an amine-coupling process to make OA-functionalized graphite oxide (OA-GO), and a novel reduction process...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2010-07, Vol.48 (8), p.2282-2289 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graphene, functionalized with oleylamine (OA) and soluble in non-polar organic solvents, was produced on a large scale with a high yield by combining the Hummers process for graphite oxidation, an amine-coupling process to make OA-functionalized graphite oxide (OA-GO), and a novel reduction process using trioctylphosphine (TOP). TOP acts as both a reducing agent and an aggregation-prevention surfactant in the reduction of OA-GO in 1,2-dichlorobenzene (DCB). The reduction of OA-GO is confirmed by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and Raman spectroscopy. The exfoliation of GO, OA-GO, and OA-functionalized graphene (OA-G) is verified by atomic force microscopy. The conductivity of TOP-reduced OA-G, which is deduced from the current–voltage characteristics of a vacuum-filtered thin film, shows that the reduction of functionalized GO by TOP is as effective as the reduction of GO by hydrazine. |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2010.03.002 |