Finite difference methods for viscous incompressible global stability analysis

In the present article some high-order finite-difference schemes and in particularly dispersion-relation-preserving (DRP) family schemes, initially developed by Tam and Webb [Dispersion-relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys. 107 (1993) 262–281.] f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2010-06, Vol.39 (6), p.911-925
Hauptverfasser: Merle, Xavier, Alizard, Frédéric, Robinet, Jean-Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present article some high-order finite-difference schemes and in particularly dispersion-relation-preserving (DRP) family schemes, initially developed by Tam and Webb [Dispersion-relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys. 107 (1993) 262–281.] for computational aeroacoustic problems, are used for global stability issue. (The term global is not used in weakly-non-parallel framework but rather for fully non-parallel flows. Some authors like Theofilis [Advances in global linear instability analysis of non-parallel and three-dimensional flows, Progress in Aerospace Sciences 39 (2003) 249–315] refer to this approach as “BiGlobal”.) These DRP schemes are compared with different classical schemes as second and fourth-order finite-difference schemes, seven-order compact schemes and spectral collocation scheme which is usually employed in such stability problems. A detailed comparative study of these schemes for incompressible flows over two academic configurations (square lid-driven cavity and separated boundary layer at different Reynolds numbers) is presented, and we intend to show that these schemes are sufficiently accurate to perform global stability analyses.
ISSN:0045-7930
1879-0747
DOI:10.1016/j.compfluid.2009.12.002