Coupled fixed point theorems for a generalized Meir–Keeler contraction in partially ordered metric spaces
Let X be a non-empty set and F : X × X → X be a given mapping. An element ( x , y ) ∈ X × X is said to be a coupled fixed point of the mapping F if F ( x , y ) = x and F ( y , x ) = y . In this paper, we consider the case when X is a complete metric space endowed with a partial order. We define gene...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2010-06, Vol.72 (12), p.4508-4517 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a non-empty set and
F
:
X
×
X
→
X
be a given mapping. An element
(
x
,
y
)
∈
X
×
X
is said to be a coupled fixed point of the mapping
F
if
F
(
x
,
y
)
=
x
and
F
(
y
,
x
)
=
y
. In this paper, we consider the case when
X
is a complete metric space endowed with a partial order. We define generalized Meir–Keeler type functions and we prove some coupled fixed point theorems under a generalized Meir–Keeler contractive condition. Some applications of our obtained results are given. The presented theorems extend and complement the recent fixed point theorems due to Bhaskar and Lakshmikantham [T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006) 1379–1393]. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2010.02.026 |