Maximally non-abelian vortices from self-dual Yang–Mills fields
A particular dimensional reduction of SU(2N) Yang–Mills theory on Σ×S2, with Σ a Riemann surface, yields an S(U(N)×U(N)) gauge theory on Σ, with a matrix Higgs field. The SU(2N) self-dual Yang–Mills equations reduce to Bogomolny equations for vortices on Σ. These equations are formally integrable if...
Gespeichert in:
Veröffentlicht in: | Physics letters. B 2010-04, Vol.687 (4-5), p.395-399 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 399 |
---|---|
container_issue | 4-5 |
container_start_page | 395 |
container_title | Physics letters. B |
container_volume | 687 |
creator | Manton, Nicholas S. Sakai, Norisuke |
description | A particular dimensional reduction of SU(2N) Yang–Mills theory on Σ×S2, with Σ a Riemann surface, yields an S(U(N)×U(N)) gauge theory on Σ, with a matrix Higgs field. The SU(2N) self-dual Yang–Mills equations reduce to Bogomolny equations for vortices on Σ. These equations are formally integrable if Σ is the hyperbolic plane, and we present a subclass of solutions. |
doi_str_mv | 10.1016/j.physletb.2010.03.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753744625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0370269310003102</els_id><sourcerecordid>753744625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-4ae19d0b895b9d935bed4b82f15ba2aaebe012be7c1aa76ffd826ece91095533</originalsourceid><addsrcrecordid>eNqFkLtOAzEQRS0EEiHwC2gbRLXBj_U-OqKIl5SIJg2VNfbOgiNnN9ibiHT8A3_Il-AogZZqpJlz5-peQi4ZHTHK8pvFaPW2DQ57PeI0LqkYUVYckQErC5HyLJPHZEBFQVOeV-KUnIWwoJQySfMBGc_gwy7BuW3Sdm0KGp2FNtl0vrcGQ9L4bpkEdE1ar8ElL9C-fn9-zaxz8WbR1eGcnDTgAl4c5pDM7-_mk8d0-vzwNBlPU5OVZZ9mgKyqqS4rqau6ElJjnemSN0xq4ACokTKusTAMoMibpi55jgYrRisphRiS6_3ble_e1xh6tbTBoHPQYrcOqpCiyLKcy0jme9L4LgSPjVr5GNFvFaNq15haqN_G1K4xRYWKjUXh1cECggHXeGiNDX9qznMhM8Ejd7vnMMbdWPQqGIutwdp6NL2qO_uf1Q_EbIbk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753744625</pqid></control><display><type>article</type><title>Maximally non-abelian vortices from self-dual Yang–Mills fields</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Manton, Nicholas S. ; Sakai, Norisuke</creator><creatorcontrib>Manton, Nicholas S. ; Sakai, Norisuke</creatorcontrib><description>A particular dimensional reduction of SU(2N) Yang–Mills theory on Σ×S2, with Σ a Riemann surface, yields an S(U(N)×U(N)) gauge theory on Σ, with a matrix Higgs field. The SU(2N) self-dual Yang–Mills equations reduce to Bogomolny equations for vortices on Σ. These equations are formally integrable if Σ is the hyperbolic plane, and we present a subclass of solutions.</description><identifier>ISSN: 0370-2693</identifier><identifier>EISSN: 1873-2445</identifier><identifier>DOI: 10.1016/j.physletb.2010.03.017</identifier><identifier>CODEN: PYLBAJ</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Dimensional reduction ; Elementary particles ; Exact sciences and technology ; Fluid flow ; Gauge theory ; Hyperbolic vortices ; Master equations ; Mathematical analysis ; Non-abelian vortices ; Nuclear physics ; Physics ; Planes ; Riemann surfaces ; Self-dual Yang–Mills fields ; The physics of elementary particles and fields ; Vortices ; Yang-Mills theory</subject><ispartof>Physics letters. B, 2010-04, Vol.687 (4-5), p.395-399</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-4ae19d0b895b9d935bed4b82f15ba2aaebe012be7c1aa76ffd826ece91095533</citedby><cites>FETCH-LOGICAL-c488t-4ae19d0b895b9d935bed4b82f15ba2aaebe012be7c1aa76ffd826ece91095533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0370269310003102$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22635432$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Manton, Nicholas S.</creatorcontrib><creatorcontrib>Sakai, Norisuke</creatorcontrib><title>Maximally non-abelian vortices from self-dual Yang–Mills fields</title><title>Physics letters. B</title><description>A particular dimensional reduction of SU(2N) Yang–Mills theory on Σ×S2, with Σ a Riemann surface, yields an S(U(N)×U(N)) gauge theory on Σ, with a matrix Higgs field. The SU(2N) self-dual Yang–Mills equations reduce to Bogomolny equations for vortices on Σ. These equations are formally integrable if Σ is the hyperbolic plane, and we present a subclass of solutions.</description><subject>Dimensional reduction</subject><subject>Elementary particles</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Gauge theory</subject><subject>Hyperbolic vortices</subject><subject>Master equations</subject><subject>Mathematical analysis</subject><subject>Non-abelian vortices</subject><subject>Nuclear physics</subject><subject>Physics</subject><subject>Planes</subject><subject>Riemann surfaces</subject><subject>Self-dual Yang–Mills fields</subject><subject>The physics of elementary particles and fields</subject><subject>Vortices</subject><subject>Yang-Mills theory</subject><issn>0370-2693</issn><issn>1873-2445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOAzEQRS0EEiHwC2gbRLXBj_U-OqKIl5SIJg2VNfbOgiNnN9ibiHT8A3_Il-AogZZqpJlz5-peQi4ZHTHK8pvFaPW2DQ57PeI0LqkYUVYckQErC5HyLJPHZEBFQVOeV-KUnIWwoJQySfMBGc_gwy7BuW3Sdm0KGp2FNtl0vrcGQ9L4bpkEdE1ar8ElL9C-fn9-zaxz8WbR1eGcnDTgAl4c5pDM7-_mk8d0-vzwNBlPU5OVZZ9mgKyqqS4rqau6ElJjnemSN0xq4ACokTKusTAMoMibpi55jgYrRisphRiS6_3ble_e1xh6tbTBoHPQYrcOqpCiyLKcy0jme9L4LgSPjVr5GNFvFaNq15haqN_G1K4xRYWKjUXh1cECggHXeGiNDX9qznMhM8Ejd7vnMMbdWPQqGIutwdp6NL2qO_uf1Q_EbIbk</recordid><startdate>20100419</startdate><enddate>20100419</enddate><creator>Manton, Nicholas S.</creator><creator>Sakai, Norisuke</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20100419</creationdate><title>Maximally non-abelian vortices from self-dual Yang–Mills fields</title><author>Manton, Nicholas S. ; Sakai, Norisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-4ae19d0b895b9d935bed4b82f15ba2aaebe012be7c1aa76ffd826ece91095533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Dimensional reduction</topic><topic>Elementary particles</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Gauge theory</topic><topic>Hyperbolic vortices</topic><topic>Master equations</topic><topic>Mathematical analysis</topic><topic>Non-abelian vortices</topic><topic>Nuclear physics</topic><topic>Physics</topic><topic>Planes</topic><topic>Riemann surfaces</topic><topic>Self-dual Yang–Mills fields</topic><topic>The physics of elementary particles and fields</topic><topic>Vortices</topic><topic>Yang-Mills theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manton, Nicholas S.</creatorcontrib><creatorcontrib>Sakai, Norisuke</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manton, Nicholas S.</au><au>Sakai, Norisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximally non-abelian vortices from self-dual Yang–Mills fields</atitle><jtitle>Physics letters. B</jtitle><date>2010-04-19</date><risdate>2010</risdate><volume>687</volume><issue>4-5</issue><spage>395</spage><epage>399</epage><pages>395-399</pages><issn>0370-2693</issn><eissn>1873-2445</eissn><coden>PYLBAJ</coden><abstract>A particular dimensional reduction of SU(2N) Yang–Mills theory on Σ×S2, with Σ a Riemann surface, yields an S(U(N)×U(N)) gauge theory on Σ, with a matrix Higgs field. The SU(2N) self-dual Yang–Mills equations reduce to Bogomolny equations for vortices on Σ. These equations are formally integrable if Σ is the hyperbolic plane, and we present a subclass of solutions.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physletb.2010.03.017</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-2693 |
ispartof | Physics letters. B, 2010-04, Vol.687 (4-5), p.395-399 |
issn | 0370-2693 1873-2445 |
language | eng |
recordid | cdi_proquest_miscellaneous_753744625 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Dimensional reduction Elementary particles Exact sciences and technology Fluid flow Gauge theory Hyperbolic vortices Master equations Mathematical analysis Non-abelian vortices Nuclear physics Physics Planes Riemann surfaces Self-dual Yang–Mills fields The physics of elementary particles and fields Vortices Yang-Mills theory |
title | Maximally non-abelian vortices from self-dual Yang–Mills fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximally%20non-abelian%20vortices%20from%20self-dual%20Yang%E2%80%93Mills%20fields&rft.jtitle=Physics%20letters.%20B&rft.au=Manton,%20Nicholas%20S.&rft.date=2010-04-19&rft.volume=687&rft.issue=4-5&rft.spage=395&rft.epage=399&rft.pages=395-399&rft.issn=0370-2693&rft.eissn=1873-2445&rft.coden=PYLBAJ&rft_id=info:doi/10.1016/j.physletb.2010.03.017&rft_dat=%3Cproquest_cross%3E753744625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753744625&rft_id=info:pmid/&rft_els_id=S0370269310003102&rfr_iscdi=true |