Maximally non-abelian vortices from self-dual Yang–Mills fields

A particular dimensional reduction of SU(2N) Yang–Mills theory on Σ×S2, with Σ a Riemann surface, yields an S(U(N)×U(N)) gauge theory on Σ, with a matrix Higgs field. The SU(2N) self-dual Yang–Mills equations reduce to Bogomolny equations for vortices on Σ. These equations are formally integrable if...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. B 2010-04, Vol.687 (4-5), p.395-399
Hauptverfasser: Manton, Nicholas S., Sakai, Norisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A particular dimensional reduction of SU(2N) Yang–Mills theory on Σ×S2, with Σ a Riemann surface, yields an S(U(N)×U(N)) gauge theory on Σ, with a matrix Higgs field. The SU(2N) self-dual Yang–Mills equations reduce to Bogomolny equations for vortices on Σ. These equations are formally integrable if Σ is the hyperbolic plane, and we present a subclass of solutions.
ISSN:0370-2693
1873-2445
DOI:10.1016/j.physletb.2010.03.017