Maximally non-abelian vortices from self-dual Yang–Mills fields
A particular dimensional reduction of SU(2N) Yang–Mills theory on Σ×S2, with Σ a Riemann surface, yields an S(U(N)×U(N)) gauge theory on Σ, with a matrix Higgs field. The SU(2N) self-dual Yang–Mills equations reduce to Bogomolny equations for vortices on Σ. These equations are formally integrable if...
Gespeichert in:
Veröffentlicht in: | Physics letters. B 2010-04, Vol.687 (4-5), p.395-399 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A particular dimensional reduction of SU(2N) Yang–Mills theory on Σ×S2, with Σ a Riemann surface, yields an S(U(N)×U(N)) gauge theory on Σ, with a matrix Higgs field. The SU(2N) self-dual Yang–Mills equations reduce to Bogomolny equations for vortices on Σ. These equations are formally integrable if Σ is the hyperbolic plane, and we present a subclass of solutions. |
---|---|
ISSN: | 0370-2693 1873-2445 |
DOI: | 10.1016/j.physletb.2010.03.017 |