Self-tuning control systems of decentralised velocity feedback

This paper is concerned with decentralised velocity feedback for the control of vibration on a flexible structure. Previous studies have shown that a direct velocity feedback loop with a collocated force actuator produces a damping action. Multiple velocity feedback control loops thus reduce the vib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2010-07, Vol.329 (14), p.2738-2750
Hauptverfasser: Zilletti, Michele, Elliott, Stephen J., Gardonio, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with decentralised velocity feedback for the control of vibration on a flexible structure. Previous studies have shown that a direct velocity feedback loop with a collocated force actuator produces a damping action. Multiple velocity feedback control loops thus reduce the vibration and sound radiation of structures at low frequency resonances, where the response is controlled by damping. However, if the control gains are too high, so that the response of the structure at the control point is close to zero, the feedback control loops will pin the panel at the control positions and thus no damping action is generated. Therefore, in order to maximise the active damping effect, the feedback gains have optimum values and the loops need to be properly tuned. In this paper, a numerical investigation is performed to investigate the possibility of self-tuning the feedback control gains to maximise the power absorbed by the control loops and hence maximise the active damping. The tuning principle is first examined for a single feedback loop for different excitation signals. The tuning of multiple control loops is then considered and the implementation of a practical tuning algorithm is discussed.
ISSN:0022-460X
1095-8568
DOI:10.1016/j.jsv.2010.01.024