Naturality of homogeneous metrics on Stiefel manifolds SO ( m + 1 ) / SO ( m − 1 )
It is well known that the unit tangent sphere bundle T 1 S m of the standard sphere S m can be naturally identified with the Stiefel manifold V 2 R m + 1 = SO ( m + 1 ) / SO ( m − 1 ) . In this paper, we construct the ( 1 – 1 ) correspondence between all SO ( m + 1 ) -invariant homogeneous metrics o...
Gespeichert in:
Veröffentlicht in: | Differential geometry and its applications 2010-04, Vol.28 (2), p.131-139 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well known that the unit tangent sphere bundle
T
1
S
m
of the standard sphere
S
m
can be naturally identified with the Stiefel manifold
V
2
R
m
+
1
=
SO
(
m
+
1
)
/
SO
(
m
−
1
)
. In this paper, we construct the
(
1
–
1
)
correspondence between all
SO
(
m
+
1
)
-invariant homogeneous metrics on
V
2
R
m
+
1
and all so-called
g-natural metrics on
T
1
S
m
. |
---|---|
ISSN: | 0926-2245 1872-6984 |
DOI: | 10.1016/j.difgeo.2009.05.007 |