Speeding up continuous GRASP

Continuous GRASP (C-GRASP) is a stochastic local search metaheuristic for finding cost-efficient solutions to continuous global optimization problems subject to box constraints (Hirsch et al., 2007). Like a greedy randomized adaptive search procedure (GRASP), a C-GRASP is a multi-start procedure whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2010-09, Vol.205 (3), p.507-521
Hauptverfasser: Hirsch, M.J., Pardalos, P.M., Resende, M.G.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Continuous GRASP (C-GRASP) is a stochastic local search metaheuristic for finding cost-efficient solutions to continuous global optimization problems subject to box constraints (Hirsch et al., 2007). Like a greedy randomized adaptive search procedure (GRASP), a C-GRASP is a multi-start procedure where a starting solution for local improvement is constructed in a greedy randomized fashion. In this paper, we describe several improvements that speed up the original C-GRASP and make it more robust. We compare the new C-GRASP with the original version as well as with other algorithms from the recent literature on a set of benchmark multimodal test functions whose global minima are known. Hart’s sequential stopping rule (1998) is implemented and C-GRASP is shown to converge on all test problems.
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2010.02.009