Modelling and simulation of the steady-state and dynamic behaviour of a PEM fuel cell

The performance of a fuel cell can be expressed by the voltage–load current (V–I) characteristics. In this study, two mathematical modelling for computing the steady-state and dynamic voltage–current (V–I) characteristics of PEM fuel cell stacks have been developed. For determining the humidity of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2010-04, Vol.35 (4), p.1633-1646
Hauptverfasser: Sharifi Asl, S.M., Rowshanzamir, S., Eikani, M.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The performance of a fuel cell can be expressed by the voltage–load current (V–I) characteristics. In this study, two mathematical modelling for computing the steady-state and dynamic voltage–current (V–I) characteristics of PEM fuel cell stacks have been developed. For determining the humidity of the membrane in steady-state conditions, mathematical and theoretical equations are considered. This value is not an adjustable parameter. The goal of dynamic modelling is to find the response of the system against the load variations. In this research, in addition to the charge double layer phenomenon, the effects of temperature and gas flows are taken into account, then the fuel cell system is divided into three control volumes and thus a lumped-parameter model for these sub-systems is established using the mass and heat transfer equations. The proposed models are implemented in Matlab/Simulink environment. Additionally, these models were tested for the SR-12Modular PEM Generator, the Ballard Mark V FC, the BCS 500-W stack and various experimental data in open literature. They exhibit excellent agreement with other simulation and experimental results.
ISSN:0360-5442
DOI:10.1016/j.energy.2009.12.010