Matchgate and space-bounded quantum computations are equivalent
Matchgates are an especially multiflorous class of two-qubit nearest-neighbour quantum gates, defined by a set of algebraic constraints. They occur for example in the theory of perfect matchings of graphs, non-interacting fermions and one-dimensional spin chains. We show that the computational power...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical and physical sciences Mathematical and physical sciences, 2010-03, Vol.466 (2115), p.809-830 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Matchgates are an especially multiflorous class of two-qubit nearest-neighbour quantum gates, defined by a set of algebraic constraints. They occur for example in the theory of perfect matchings of graphs, non-interacting fermions and one-dimensional spin chains. We show that the computational power of circuits of matchgates is equivalent to that of space-bounded quantum computation with unitary gates, with space restricted to being logarithmic in the width of the matchgate circuit. In particular, for the conventional setting of polynomial-sized (logarithmic-space generated) families of matchgate circuits, known to be classically simulatable, we characterize their power as coinciding with polynomial-time and logarithmic-space-bounded universal unitary quantum computation. |
---|---|
ISSN: | 1364-5021 0962-8444 1471-2946 |
DOI: | 10.1098/rspa.2009.0433 |