Convergence Rate of LSMI in Amplitude Heterogeneous Clutter Environment

In this letter, we analyze the convergence rate of loaded sample matrix inversion (LSMI) algorithm in amplitude heterogeneous clutter environment. The probability density function of output signal to interference and noise ratio loss (SINR Loss) is derived. Then we give an approximate expression of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2010-05, Vol.17 (5), p.481-484
Hauptverfasser: Tang, Bo, Tang, Jun, Peng, Yingning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we analyze the convergence rate of loaded sample matrix inversion (LSMI) algorithm in amplitude heterogeneous clutter environment. The probability density function of output signal to interference and noise ratio loss (SINR Loss) is derived. Then we give an approximate expression of average SINR loss. Compared with the case where samples used for estimation of covariance matrix of cell under test (CUT) are independent and identically distributed (i.i.d.) with the snapshot of CUT, if the clutter to noise ratio (CNR) of the training samples is larger than that of CUT, the convergence rate of LSMI is faster and output SINR is higher; conversely, the convergence rate of LSMI is slower and SINR is lower. Simulation validates the theoretical analysis.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2010.2044849