Linearization of Efficiency-Optimized Dynamic Load Modulation Transmitter Architectures
In this paper, a detailed linearization procedure for dynamic load modulation (DLM) transmitter architectures is proposed for the first time. Compared with the conventional single-input/single-output digital predistortion (DPD) approach used with traditional power amplifiers (PAs), the proposed line...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2010-04, Vol.58 (4), p.873-881 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a detailed linearization procedure for dynamic load modulation (DLM) transmitter architectures is proposed for the first time. Compared with the conventional single-input/single-output digital predistortion (DPD) approach used with traditional power amplifiers (PAs), the proposed linearization scheme is based on a regular memory DPD in combination with an efficiency-optimized static one-to-two mapping inverse model, which constructs the predistorted input signals to the DLM transmitter. The time-alignment issue, which is very important to this dual-input architecture, is also considered. The proposed technique is demonstrated by a 1-GHz 10-W LDMOS PA that employs a varactor-based tunable matching network. A normalized mean square error of -35 dB, and adjacent channel leakage ratio of -43 dBc is achieved, with an average power-added efficiency of 53% for a single-carrier WCDMA signal with 7-dB peak-to-average ratio. Finally, it is shown that the time-alignment sensitivity is relaxed when the proposed linearization scheme is used. This means that the overall complexity of the transmitter implementation can be reduced. |
---|---|
ISSN: | 0018-9480 1557-9670 1557-9670 |
DOI: | 10.1109/TMTT.2010.2042654 |