Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms
Fermionic alkaline-earth atoms have unique properties that make them attractive candidates for the realization of atomic clocks and degenerate quantum gases. At the same time, they are attracting considerable theoretical attention in the context of quantum information processing. Here we demonstrate...
Gespeichert in:
Veröffentlicht in: | Nature physics 2010-04, Vol.6 (4), p.289-295 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fermionic alkaline-earth atoms have unique properties that make them attractive candidates for the realization of atomic clocks and degenerate quantum gases. At the same time, they are attracting considerable theoretical attention in the context of quantum information processing. Here we demonstrate that when such atoms are loaded in optical lattices, they can be used as quantum simulators of unique many-body phenomena. In particular, we show that the decoupling of the nuclear spin from the electronic angular momentum can be used to implement many-body systems with an unprecedented degree of symmetry, characterized by the
S
U
(
N
) group with
N
as large as 10. Moreover, the interplay of the nuclear spin with the electronic degree of freedom provided by a stable optically excited state should enable the study of physics governed by the spin–orbital interaction. Such systems may provide valuable insights into the physics of strongly correlated transition-metal oxides, heavy-fermion materials and spin-liquid phases.
Building on ideas from quantum information science and on recent experimental advances, the use of ultracold alkaline-earth atoms in optical lattices as quantum simulators of many-body phenomena is proposed. The corresponding models possess a high degree of symmetry and may provide fundamental insights into strongly correlated systems. |
---|---|
ISSN: | 1745-2473 1745-2481 |
DOI: | 10.1038/nphys1535 |