Thermal stability and dynamic mechanical behavior of exfoliated graphite nanoplatelets-LLDPE nanocomposites
The objective of this research was to investigate thermal stability and dynamic mechanical behavior of Exfoliated graphite nanoplatelets (xGnP™)‐Linear Low‐Density Poly Ethylene (LLDPE) nanocomposites with different xGnP loading content. The xGnP‐LLDPE nanocomposites were fabricated by solution and...
Gespeichert in:
Veröffentlicht in: | Polymer composites 2010-05, Vol.31 (5), p.755-761 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of this research was to investigate thermal stability and dynamic mechanical behavior of Exfoliated graphite nanoplatelets (xGnP™)‐Linear Low‐Density Poly Ethylene (LLDPE) nanocomposites with different xGnP loading content. The xGnP‐LLDPE nanocomposites were fabricated by solution and melt mixing in various screw rotating systems such as co‐, counter‐, and modified‐corotating. The storage modulus (E′) of the composites at the starting point of −50°C increased as xGnP contents increased. E′ of the nanocomposite with only 7 wt% of xGnP was 2.5 times higher than that of the control LLDPE. Thermal expansion and the coefficient of thermal expansion of xGnP‐loaded composites were much lower than those of the control LLDPE in the range of 45–80°C (299.8 × 10−6/°C) and 85–100°C (365.3 × 10−6/°C). Thermal stability of the composites was also affected by xGnP dispersion in LLDPE matrix. The xGnP‐LLDPE nanocomposites by counter‐rotating screw system showed higher thermal stability than ones by co‐rotating and modified‐co‐rotating system at 5 wt% and 12 wt% of xGnP. xGnP had a great effect on high thermal stability of xGnP‐LLDPE composites to be applied as tube and film for electrical materials. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers |
---|---|
ISSN: | 0272-8397 1548-0569 |
DOI: | 10.1002/pc.20781 |