Eigenplaces: Segmenting Space through Digital Signatures
Researchers use eigendecomposition to leverage MIT's Wi-Fi network activity data and analyze to the physical environment. We proposed a method to analyze and categorize wireless access points based on common usage characteristics that reflect real-world, placed-based behaviors. It uses eigendec...
Gespeichert in:
Veröffentlicht in: | IEEE pervasive computing 2010-01, Vol.9 (1), p.78-84 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Researchers use eigendecomposition to leverage MIT's Wi-Fi network activity data and analyze to the physical environment. We proposed a method to analyze and categorize wireless access points based on common usage characteristics that reflect real-world, placed-based behaviors. It uses eigendecomposition to study the Wi-Fi network at the Massahusetts Institute of Technology (MIT), correlating data generated as a byproduct of network activity with the physical environment. Our approach provides an instant survey of building use across the entire campus at a surprisingly fine-grained level. The resulting eigenplaces have implications for reseach across a range of wireless technology as well as potential applications in network planning, traffic and tourism management, and even marketing. |
---|---|
ISSN: | 1536-1268 1558-2590 |
DOI: | 10.1109/MPRV.2009.62 |