Eigenplaces: Segmenting Space through Digital Signatures

Researchers use eigendecomposition to leverage MIT's Wi-Fi network activity data and analyze to the physical environment. We proposed a method to analyze and categorize wireless access points based on common usage characteristics that reflect real-world, placed-based behaviors. It uses eigendec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE pervasive computing 2010-01, Vol.9 (1), p.78-84
Hauptverfasser: Calabrese, F., Reades, J., Ratti, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Researchers use eigendecomposition to leverage MIT's Wi-Fi network activity data and analyze to the physical environment. We proposed a method to analyze and categorize wireless access points based on common usage characteristics that reflect real-world, placed-based behaviors. It uses eigendecomposition to study the Wi-Fi network at the Massahusetts Institute of Technology (MIT), correlating data generated as a byproduct of network activity with the physical environment. Our approach provides an instant survey of building use across the entire campus at a surprisingly fine-grained level. The resulting eigenplaces have implications for reseach across a range of wireless technology as well as potential applications in network planning, traffic and tourism management, and even marketing.
ISSN:1536-1268
1558-2590
DOI:10.1109/MPRV.2009.62