Fire retardancy mechanisms of arylphosphates in polycarbonate (PC) and PC/acrylonitrile-butadiene-styrene

The pyrolysis of polycarbonate (PC) and PC/acrylonitrile-butadiene-styrene (PC/ABS) with and without arylphosphates (triphenylphosphate TPP, resorcinol-bis(diphenyl phosphate) RDP and bisphenol A bis(diphenyl phosphate) BDP) is investigated by thermal analysis as key to understanding the flame retar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2009-09, Vol.97 (3), p.949-958
Hauptverfasser: Perret, Birgit, Pawlowski, Kristin H, Schartel, Bernhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pyrolysis of polycarbonate (PC) and PC/acrylonitrile-butadiene-styrene (PC/ABS) with and without arylphosphates (triphenylphosphate TPP, resorcinol-bis(diphenyl phosphate) RDP and bisphenol A bis(diphenyl phosphate) BDP) is investigated by thermal analysis as key to understanding the flame retardancy mechanisms and corresponding structure--property relationships. The correspondence between the decomposition temperature range of arylphosphates and PC is pointed out as prerequisite for the occurrence of the reaction between arylphosphate and structures that are typical for the beginning of PC decomposition. Resulting cross-linking enhances charring in the condensed phase and competes with the alternative release of phosphate in the gas phase and thus flame inhibition. Flame inhibition was identified as the main flame retardancy mechanism. The additional condensed phase mechanisms optimise the performance.
ISSN:1388-6150
1572-8943
DOI:10.1007/s10973-009-0379-7