Microstructural evolution during extrusion and ECAP of a spray-deposited Al–Zn–Mg–Cu–Sc–Zr alloy
The microstructural evolution of an Al–Zn–Mg–Cu–Sc–Zr alloy prepared by spray deposition via extrusion and equal-channel angular pressing (ECAP) was investigated in this study. Deformation route A for Al–11.5 wt% Zn–2 wt% Mg–1.5 wt% Cu–0.2 wt% Sc–0.15% Zr super-strength alloy was carried out at 573 ...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2010-06, Vol.45 (11), p.3023-3029 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The microstructural evolution of an Al–Zn–Mg–Cu–Sc–Zr alloy prepared by spray deposition via extrusion and equal-channel angular pressing (ECAP) was investigated in this study. Deformation route A for Al–11.5 wt% Zn–2 wt% Mg–1.5 wt% Cu–0.2 wt% Sc–0.15% Zr super-strength alloy was carried out at 573 K by ECAP. The microstructures of extruded and ECAP samples were investigated by means of Electron Backscatter Diffraction (EBSD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). A large amount of dislocation tangles were formed inside grains during ECAP, which further evolved into sub-boundaries and high angle grain boundaries. Microstructure analyses showed that the grain size was refined to 800 nm after 8 passes ECAP from earlier 3.5 μm of sprayed and extruded alloy. A few finer MgZn
2
and Al
3
(Sc,Zr) were dispersed uniformly after ECAP. The textures of 8 passes ECAPed sample were dominated by the strong Cu orientation and relatively weak S orientation. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-010-4306-x |