Structural study of Li2MnO3 by electron microscopy
Detailed crystallographic data on high-quality Li 2 MnO 3 material has been obtained using a combination of X-ray diffraction (XRD), selected-area electron diffraction (SAED), high-resolution electron microscopy (HREM), and 0.1 nm probe high-angle annular dark-field imaging (HAADF) in a scanning tra...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2009-10, Vol.44 (20), p.5579-5587 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Detailed crystallographic data on high-quality Li
2
MnO
3
material has been obtained using a combination of X-ray diffraction (XRD), selected-area electron diffraction (SAED), high-resolution electron microscopy (HREM), and 0.1 nm probe high-angle annular dark-field imaging (HAADF) in a scanning transmission electron microscope. A high-purity Li
2
MnO
3
powder was annealed at 950 °C for 3 days to obtain predominantly defect-free grains which average size was 3.0 ± 1.5 μm. Rietveld refinement indicated that the
C2/m
spacegroup provided the best fit for the XRD data. Electron diffraction patterns obtained along various zone axes, on defect-free oxide particles, could be uniquely indexed to the monoclinic structure. HREM and HAADF images of defect-free grains were consistent with a Li–Mn–Mn– arrangement, i.e., lithium ordering in the transition metal planes. Low-magnification TEM images occasionally revealed stacking defects within oxide particles. HREM images of sample areas containing defects revealed a low density of stacking faults within the monoclinic sequence, resulting in a trigonal
P3
1
12
local arrangement. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-009-3784-1 |