Ideal asymmetric supercapacitors consisting of polyaniline nanofibers and graphene nanosheets with proper complementary potential windows
Polyaniline (PANI) nanofibers are synthesized via a chemical method of rapid mixing for the application of asymmetric supercapacitors. The diameter and aspect ratio of PANI nanofibers is found to be controllable by varying the aniline/oxidant concentration ratio. The ideal capacitive responses of PA...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2010-08, Vol.55 (20), p.6015-6021 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polyaniline (PANI) nanofibers are synthesized via a chemical method of rapid mixing for the application of asymmetric supercapacitors. The diameter and aspect ratio of PANI nanofibers is found to be controllable by varying the aniline/oxidant concentration ratio. The ideal capacitive responses of PANI nanofibers between 0.2 and 0.7
V (vs. Ag/AgCl) in concentrated acidic media are demonstrated by cyclic voltammetric (CV) and electrochemical impedance spectroscopic (EIS) analyses coupled with a schematic equivalent-circuit model. The morphologies and textures of nanofibers are examined by scanning electron microscopic (SEM), transmission electron microscopic (TEM) and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopic analyses. An aqueous asymmetric supercapacitor, consisting of a PANI nanofiber cathode and a graphene anode, with proper complementary potential windows is demonstrated in this work, which shows the device energy and power densities of 4.86
Wh
kg
−1 and 8.75
kW
kg
−1, respectively. |
---|---|
ISSN: | 0013-4686 1873-3859 |
DOI: | 10.1016/j.electacta.2010.05.058 |