Biosorption applications of modified fungal biomass for decolorization of Reactive Red 2 contaminated solutions: Batch and dynamic flow mode studies

Biosorption characteristics of a surfactant modified macro fungus were investigated for decolorization of Reactive Red 2 contaminated solutions. Better biosorption efficiency was obtained with a small amount of fungal biomass after modification process. Operating variables like pH, biomass amount, c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2010-10, Vol.101 (19), p.7271-7277
Hauptverfasser: Akar, Tamer, Divriklioglu, Melike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biosorption characteristics of a surfactant modified macro fungus were investigated for decolorization of Reactive Red 2 contaminated solutions. Better biosorption efficiency was obtained with a small amount of fungal biomass after modification process. Operating variables like pH, biomass amount, contact time, temperature, dye concentration, flow rate and column size were explored. The biosorption process followed the pseudo-second-order kinetic and Langmuir isotherm models. Thermodynamic data confirm that the biosorption process is spontaneous and endothermic in nature. Under optimized batch conditions, up to 141.53 mg dye g −1 could be removed from solution in a relatively short time. Modification process was confirmed by FTIR spectroscopy and zeta potential studies. Possible dye-biosorbent interactions were discussed. Good dynamic flow biosorption potential was observed for the suggested biosorbent in simulated wastewater. Overall, batch and continuous mode data suggest that this environmentally friendly and efficient biosorbent may be useful for the removal of reactive dyes from aqueous media.
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2010.04.044