On 3-edge-connected supereulerian graphs in graph family C ( l , k )
Let l > 0 and k ≥ 0 be two integers. Denote by C ( l , k ) the family of 2-edge-connected graphs such that a graph G ∈ C ( l , k ) if and only if for every bond S ⊂ E ( G ) with | S | ≤ 3 , each component of G − S has order at least ( | V ( G ) | − k ) / l . In this paper we prove that if a 3-edg...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2010-09, Vol.310 (17), p.2455-2459 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
l
>
0
and
k
≥
0
be two integers. Denote by
C
(
l
,
k
)
the family of 2-edge-connected graphs such that a graph
G
∈
C
(
l
,
k
)
if and only if for every bond
S
⊂
E
(
G
)
with
|
S
|
≤
3
, each component of
G
−
S
has order at least
(
|
V
(
G
)
|
−
k
)
/
l
. In this paper we prove that if a 3-edge-connected graph
G
∈
C
(
12
,
1
)
, then
G
is supereulerian if and only if
G
cannot be contracted to the Petersen graph. Our result extends some results by Chen and by Niu and Xiong. Some applications are also discussed. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2010.05.021 |