Avoiding consecutive patterns in permutations

The number of permutations that do not contain, as a factor (subword), a given set of permutations Π is studied. A new treatment of the case Π = { 12 ⋯ k } is given and then some numerical data is presented for sets Π consisting of permutations of length at most 4. Some large sets of Wilf-equivalent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied mathematics 2010-09, Vol.45 (3), p.449-461
Hauptverfasser: Aldred, R.E.L., Atkinson, M.D., McCaughan, D.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The number of permutations that do not contain, as a factor (subword), a given set of permutations Π is studied. A new treatment of the case Π = { 12 ⋯ k } is given and then some numerical data is presented for sets Π consisting of permutations of length at most 4. Some large sets of Wilf-equivalent permutations are also given.
ISSN:0196-8858
1090-2074
DOI:10.1016/j.aam.2010.03.005