In vitro characterization of Arabidopsis CP12 isoforms reveals common biochemical and molecular properties
In oxygenic photosynthetic organisms, the activities of two Calvin cycle enzymes (glyceraldehyde-3-phosphate dehydrogenase, GAPDH and phosphoribulokinase, PRK) are regulated by CP12-mediated complex formation. The Arabidopsis genome contains three genes encoding different CP12 isoforms (CP12-1, At2g...
Gespeichert in:
Veröffentlicht in: | Journal of plant physiology 2010-08, Vol.167 (12), p.939-950 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In oxygenic photosynthetic organisms, the activities of two Calvin cycle enzymes (glyceraldehyde-3-phosphate dehydrogenase, GAPDH and phosphoribulokinase, PRK) are regulated by CP12-mediated complex formation. The
Arabidopsis genome contains three genes encoding different CP12 isoforms (CP12-1, At2g47400; CP12-2, At3g62410 and CP12-3, At1g76560), all plastid-targeted, as demonstrated by localization in the chloroplast stroma of CP12 precursor sequences fused with the green fluorescence protein (GFP). The disorder predictor PONDR
® classified
Arabidopsis CP12s as largely disordered proteins, and circular dichroism spectra confirmed these predictions. Based on sequence similarity, 66 CP12s from different organisms were identified and clustered in six types, with CP12-1 and -2 grouping together with other largely disordered sequences (Type I), while a lower level of disorder was predicted within the cluster including CP12-3 (Type II).
The three
Arabidopsis CP12 isoforms were expressed as mature recombinant forms and purified to homogeneity. Redox titrations demonstrated that the four conserved cysteines of each CP12 isoform could form two internal disulfide bridges with different midpoint redox potentials (
E
m,7.9 −326
mV and −350
mV in both CP12-1 and CP12-2;
E
m,7.9 −332
mV and −373
mV in CP12-3). In agreement with their similar redox properties, all CP12 isoforms formed,
in vitro, a supramolecular complex with GAPDH and PRK, with comparable inhibitory effects on both enzyme activities. In order to test whether CP12 isoforms might have broader regulatory functions than regulating Calvin cycle enzymes, CP12 proteins were analyzed for their capacity to bind plastidial glycolytic GAPDH (GapCp). To this purpose, the mature form of
Arabidopsis GapCp2 was cloned, expressed in recombinant form and purified to homogeneity. However, contrary to expectations, no CP12 isoform was able to bind GapCp2 under any of the conditions tested. |
---|---|
ISSN: | 0176-1617 1618-1328 |
DOI: | 10.1016/j.jplph.2010.02.008 |