Topological entropy for set valued maps
Any continuous map T on a compact metric space X induces in a natural way a continuous map T ¯ on the space K ( X ) of all non-empty compact subsets of X . Let T be a homeomorphism on the interval or on the circle. It is proved that the topological entropy of the induced set valued map T ¯ is zero o...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2010-09, Vol.73 (6), p.1533-1537 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Any continuous map
T
on a compact metric space
X
induces in a natural way a continuous map
T
¯
on the space
K
(
X
)
of all non-empty compact subsets of
X
. Let
T
be a homeomorphism on the interval or on the circle. It is proved that the topological entropy of the induced set valued map
T
¯
is zero or infinity. Moreover, the topological entropy of
T
¯
|
C
(
X
)
is zero, where
C
(
X
)
denotes the space of all non-empty compact and connected subsets of
X
. For general continuous maps on compact metric spaces these results are not valid. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2010.04.054 |