Topological entropy for set valued maps

Any continuous map T on a compact metric space X induces in a natural way a continuous map T ¯ on the space K ( X ) of all non-empty compact subsets of X . Let T be a homeomorphism on the interval or on the circle. It is proved that the topological entropy of the induced set valued map T ¯ is zero o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2010-09, Vol.73 (6), p.1533-1537
Hauptverfasser: Lampart, Marek, Raith, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Any continuous map T on a compact metric space X induces in a natural way a continuous map T ¯ on the space K ( X ) of all non-empty compact subsets of X . Let T be a homeomorphism on the interval or on the circle. It is proved that the topological entropy of the induced set valued map T ¯ is zero or infinity. Moreover, the topological entropy of T ¯ | C ( X ) is zero, where C ( X ) denotes the space of all non-empty compact and connected subsets of X . For general continuous maps on compact metric spaces these results are not valid.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2010.04.054