Paraconformal structures and differential equations
In the present paper we consider manifolds equipped with a paraconformal structure, understood as the tangent bundle isomorphic to a symmetric tensor product of rank-two vector bundles. If an ordinary differential equation satisfies Wünschmann condition then it defines a paraconformal structure on s...
Gespeichert in:
Veröffentlicht in: | Differential geometry and its applications 2010-10, Vol.28 (5), p.523-531 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper we consider manifolds equipped with a paraconformal structure, understood as the tangent bundle isomorphic to a symmetric tensor product of rank-two vector bundles. If an ordinary differential equation satisfies Wünschmann condition then it defines a paraconformal structure on solution space. In the present paper we characterize all paraconformal structures which can be obtained in this way. In particular, we provide a new proof that all paraconformal structures on 3-dimensional manifolds are defined by ODEs. We show that if the dimension is greater than 3 then there exist structures which are not defined by an ODE. |
---|---|
ISSN: | 0926-2245 1872-6984 |
DOI: | 10.1016/j.difgeo.2010.05.003 |