Paraconformal structures and differential equations

In the present paper we consider manifolds equipped with a paraconformal structure, understood as the tangent bundle isomorphic to a symmetric tensor product of rank-two vector bundles. If an ordinary differential equation satisfies Wünschmann condition then it defines a paraconformal structure on s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential geometry and its applications 2010-10, Vol.28 (5), p.523-531
1. Verfasser: Krynski, Wojciech
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper we consider manifolds equipped with a paraconformal structure, understood as the tangent bundle isomorphic to a symmetric tensor product of rank-two vector bundles. If an ordinary differential equation satisfies Wünschmann condition then it defines a paraconformal structure on solution space. In the present paper we characterize all paraconformal structures which can be obtained in this way. In particular, we provide a new proof that all paraconformal structures on 3-dimensional manifolds are defined by ODEs. We show that if the dimension is greater than 3 then there exist structures which are not defined by an ODE.
ISSN:0926-2245
1872-6984
DOI:10.1016/j.difgeo.2010.05.003