Molecular dynamics simulations of the transformation of carbon peapods into double-walled carbon nanotubes
The transformation of carbon peapods (encapsulated fullerenes in nanotubes) into double-walled nanotubes was studied using molecular dynamics simulation. The simulations reproduce the two main trends known experimentally: the production of low-defect nanotubes and the templating effect of the outer...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2010-10, Vol.48 (12), p.3592-3598 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The transformation of carbon peapods (encapsulated fullerenes in nanotubes) into double-walled nanotubes was studied using molecular dynamics simulation. The simulations reproduce the two main trends known experimentally: the production of low-defect nanotubes and the templating effect of the outer tube. The process involves a low-temperature polymerization of the fullerenes followed by higher temperature self-assembly into a tube. Modelling of this second stage is made possible by the use of the Environment-Dependent Interaction Potential, a large number of atoms and long-time annealing. Analysis shows that the outer tube acts as a container for the self-assembly process, analogous to previous simulations and experiments in which free surfaces, either external or internal, template the formation of highly ordered sp
2 phases. |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2010.06.004 |