Direct and iterative methods for the numerical solution of mixed integral equations

In this paper we analyze and compare two classical methods to solve Volterra–Fredholm integral equations. The first is a collocation method; the second one is a fixed point method. Both of them are proposed on a particular class of approximating functions. Precisely the first method is based on a li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2010-08, Vol.216 (12), p.3739-3746
Hauptverfasser: Caliò, F., Fernández Muñoz, M.V., Marchetti, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we analyze and compare two classical methods to solve Volterra–Fredholm integral equations. The first is a collocation method; the second one is a fixed point method. Both of them are proposed on a particular class of approximating functions. Precisely the first method is based on a linear spline class approximation and the second one on Schauder linear basis. We analyze some problems of convergence and we propose some remarks about the peculiarities and adaptability of both methods. Numerical results complete the work.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2010.05.032