Shape Changes Induced by N-Terminal Platination of Ubiquitin by Cisplatin
The three-dimensional conformation of a protein is an important property and plays a key role in its biological activity. We show here that ion mobility-mass spectrometry (IM-MS) can be used to detect conformational changes in the protein ubiquitin in the gas phase induced by reaction with the antic...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Mass Spectrometry 2010-07, Vol.21 (7), p.1097-1106 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The three-dimensional conformation of a protein is an important property and plays a key role in its biological activity. We show here that ion mobility-mass spectrometry (IM-MS) can be used to detect conformational changes in the protein ubiquitin in the gas phase induced by reaction with the anticancer drug cisplatin. The primary adduct was ubiquitin-{Pt(NH
3)
2} under denaturing conditions. Up to three different conformations appear to be generated upon platination depending on the charge state. The collision cross-sections (Ω) for each conformation indicate that the conformations of the platinated protein are contracted in size compared with unmodified ubiquitin with generally smaller Ω values. Ion mobility-tandem MS allowed determination of the platinum binding site without a requirement for prior chromatographic separation. A rapid 30-min digestion of cisplatin-modified ubiquitin with trypsin allowed the platination site to be identified as the N-terminal methionine following low-energy collision-induced dissociation (CID) studies of the modified peptide. The data were generated using a Traveling-Wave based ion mobility-MS approach. Such cisplatin-induced shape changes may have a significant effect on its function in vivo. This work highlights the usefulness of the ion-mobility mass spectrometry technique for shedding new light on such protein interactions.
Ion mobility-MS studies show that platination of the N-terminal methionine of ubiquitin with the anticancer drug cisplatin causes protein conformational changes. |
---|---|
ISSN: | 1044-0305 1879-1123 |
DOI: | 10.1016/j.jasms.2010.02.012 |