Intelligent model-based advisory system for the management of ventilated intensive care patients. Part II: Advisory system design and evaluation
Abstract The optimisation of ventilatory support is a crucial issue for the management of respiratory failure in critically ill patients, aiming at improving gas exchange while preventing ventilator-induced dysfunction of the respiratory system. Clinicians often rely on their knowledge/experience an...
Gespeichert in:
Veröffentlicht in: | Computer methods and programs in biomedicine 2010-08, Vol.99 (2), p.208-217 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract The optimisation of ventilatory support is a crucial issue for the management of respiratory failure in critically ill patients, aiming at improving gas exchange while preventing ventilator-induced dysfunction of the respiratory system. Clinicians often rely on their knowledge/experience and regular observation of the patient's response for adjusting the level of respiratory support. Using a similar data-driven decision-making methodology, an adaptive model-based advisory system has been designed for the clinical monitoring and management of mechanically ventilated patients. The hybrid blood gas patient model SOPAVent developed in Part I of this paper and validated against clinical data for a range of patients lung abnormalities is embedded into the advisory system to predict continuously and non-invasively the patient's respiratory response to changes in the ventilator settings. The choice of appropriate ventilator settings involves finding a balance among a selection of fundamentally competing therapeutic decisions. The design approach used here is based on a goal-directed multi-objective optimisation strategy to determine the optimal ventilator settings that effectively restore gas exchange and promote improved patient's clinical conditions. As an initial step to its clinical validation, the advisory system's closed-loop stability and performance have been assessed in a series of simulations scenarios reconstructed from real ICU patients data. The results show that the designed advisory system can generate good ventilator-setting advice under patient state changes and competing ventilator management targets. |
---|---|
ISSN: | 0169-2607 1872-7565 |
DOI: | 10.1016/j.cmpb.2010.03.009 |