Implementation of a Monolithic Single Proof-Mass Tri-Axis Accelerometer Using CMOS-MEMS Technique
This paper presents a novel single proof-mass tri-axis capacitive type complementary metal oxide semiconductor-microelectromechanical system accelerometer to reduce the footprint of the chip. A serpentine out-of-plane (Z-axis) spring is designed to reduce cross-axis sensitivity. The tri-axis acceler...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2010-07, Vol.57 (7), p.1670-1679 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel single proof-mass tri-axis capacitive type complementary metal oxide semiconductor-microelectromechanical system accelerometer to reduce the footprint of the chip. A serpentine out-of-plane (Z-axis) spring is designed to reduce cross-axis sensitivity. The tri-axis accelerometer has been successfully implemented using the TSMC 2P4M process and in-house postprocessing. The die size of this accelerometer chip containing the MEMS structure and sensing circuits is 1.78 × 1.38 mm, a reduction of nearly 50% in chip size. Within the measurement range of ~0.8 6G, the tri-axis accelerometer sensitivities (nonlinearity) of each direction are 0.53 mV/G (2.64%) for the X-axis, 0.28 mV/G (3.15%) for the Y-axis, and 0.2 mV/G (3.36%) for the Z-axis, respectively. In addition, the cross-axis sensitivities of these three axes range from 1% to 8.3% for the same measurement range. The noise floors in each direction are 120 mG/rtHz for the X-axis, 271 mG/rtHz for the Y-axis, and 357 mG/rtHz for the Z-axis. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2010.2048791 |