A scalar form of the complementary mild-slope equation

Mild-slope (MS) type equations are depth-integrated models, which predict under appropriate conditions refraction and diffraction of linear time-harmonic water waves. Among these equations, the complementary mild-slope equation (CMSE) was shown to give better agreement with exact two-dimensional lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2010-08, Vol.656, p.407-416
Hauptverfasser: TOLEDO, YARON, AGNON, YEHUDA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue
container_start_page 407
container_title Journal of fluid mechanics
container_volume 656
creator TOLEDO, YARON
AGNON, YEHUDA
description Mild-slope (MS) type equations are depth-integrated models, which predict under appropriate conditions refraction and diffraction of linear time-harmonic water waves. Among these equations, the complementary mild-slope equation (CMSE) was shown to give better agreement with exact two-dimensional linear theory compared to other MS-type equations. Nevertheless, it has a disadvantage of being a vector equation, i.e. it requires solving a system of two coupled partial differential equations. In addition, for three-dimensional problems, there is a difficulty in constructing the additional boundary condition needed for the solution. In the present work, it is shown how the vector CMSE can be transformed into an equivalent scalar equation using a pseudo-potential formulation. The pseudo-potential mild-slope equation (PMSE) preserves the accuracy of the CMSE while avoiding the need of an additional boundary condition. Furthermore, the PMSE significantly reduces the computational effort relative to the CMSE, since it is a scalar equation. The accuracy of the new model was tested numerically by comparing it to laboratory data and analytical solutions.
doi_str_mv 10.1017/S0022112010001850
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753672185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112010001850</cupid><sourcerecordid>753672185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-cf1f5d675d7ee1026e1dda6c27f391ee3a0f49e4557f6568b04cb89d9f0c5d443</originalsourceid><addsrcrecordid>eNp9kEtP20AUhUeolUgDP4CdVQm1G8PcedpLFEEARX3wWI8m4ztganuSGUcq_x5biVKJql3dxfnO0bmHkBOgZ0BBn99TyhgAo0AphULSAzIBocpcKyE_kMko56N-SD6l9DIwnJZ6QtRFlpxtbMx8iG0WfNY_Y-ZCu2qwxa638TVr66bKUxNWmOF6Y_s6dEfko7dNwuPdnZLHq8uH2XW--D6_mV0scidE2efOg5eV0rLSiECZQqgqqxzTnpeAyC31okQhpfZKqmJJhVsWZVV66mQlBJ-SL9vcVQzrDabetHVy2DS2w7BJRkuuNBv-Hciv_yVBCcaYLviIfn6HvoRN7IY_jAJeaFlqNkCwhVwMKUX0ZhXrdpjDADXj5OavyQfP6S7YjqP6aDtXp72RcapBqzE733J16vH3Xrfxl1Gaa2nU_Kf5dnunfnA2N2rg-a6LbZexrp7wT-N_t3kD29ScFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>613875972</pqid></control><display><type>article</type><title>A scalar form of the complementary mild-slope equation</title><source>Cambridge University Press Journals Complete</source><creator>TOLEDO, YARON ; AGNON, YEHUDA</creator><creatorcontrib>TOLEDO, YARON ; AGNON, YEHUDA</creatorcontrib><description>Mild-slope (MS) type equations are depth-integrated models, which predict under appropriate conditions refraction and diffraction of linear time-harmonic water waves. Among these equations, the complementary mild-slope equation (CMSE) was shown to give better agreement with exact two-dimensional linear theory compared to other MS-type equations. Nevertheless, it has a disadvantage of being a vector equation, i.e. it requires solving a system of two coupled partial differential equations. In addition, for three-dimensional problems, there is a difficulty in constructing the additional boundary condition needed for the solution. In the present work, it is shown how the vector CMSE can be transformed into an equivalent scalar equation using a pseudo-potential formulation. The pseudo-potential mild-slope equation (PMSE) preserves the accuracy of the CMSE while avoiding the need of an additional boundary condition. Furthermore, the PMSE significantly reduces the computational effort relative to the CMSE, since it is a scalar equation. The accuracy of the new model was tested numerically by comparing it to laboratory data and analytical solutions.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112010001850</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Accuracy ; Boundary conditions ; Coastal oceanography, estuaries. Regional oceanography ; Differential equations ; Earth, ocean, space ; Equivalence ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Mathematical analysis ; Mathematical models ; Physics of the oceans ; Refraction ; Scalars ; Slope stability ; surface gravity waves ; Vectors (mathematics) ; Water waves</subject><ispartof>Journal of fluid mechanics, 2010-08, Vol.656, p.407-416</ispartof><rights>Copyright © Cambridge University Press 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-cf1f5d675d7ee1026e1dda6c27f391ee3a0f49e4557f6568b04cb89d9f0c5d443</citedby><cites>FETCH-LOGICAL-c449t-cf1f5d675d7ee1026e1dda6c27f391ee3a0f49e4557f6568b04cb89d9f0c5d443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112010001850/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23071762$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>TOLEDO, YARON</creatorcontrib><creatorcontrib>AGNON, YEHUDA</creatorcontrib><title>A scalar form of the complementary mild-slope equation</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Mild-slope (MS) type equations are depth-integrated models, which predict under appropriate conditions refraction and diffraction of linear time-harmonic water waves. Among these equations, the complementary mild-slope equation (CMSE) was shown to give better agreement with exact two-dimensional linear theory compared to other MS-type equations. Nevertheless, it has a disadvantage of being a vector equation, i.e. it requires solving a system of two coupled partial differential equations. In addition, for three-dimensional problems, there is a difficulty in constructing the additional boundary condition needed for the solution. In the present work, it is shown how the vector CMSE can be transformed into an equivalent scalar equation using a pseudo-potential formulation. The pseudo-potential mild-slope equation (PMSE) preserves the accuracy of the CMSE while avoiding the need of an additional boundary condition. Furthermore, the PMSE significantly reduces the computational effort relative to the CMSE, since it is a scalar equation. The accuracy of the new model was tested numerically by comparing it to laboratory data and analytical solutions.</description><subject>Accuracy</subject><subject>Boundary conditions</subject><subject>Coastal oceanography, estuaries. Regional oceanography</subject><subject>Differential equations</subject><subject>Earth, ocean, space</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics of the oceans</subject><subject>Refraction</subject><subject>Scalars</subject><subject>Slope stability</subject><subject>surface gravity waves</subject><subject>Vectors (mathematics)</subject><subject>Water waves</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtP20AUhUeolUgDP4CdVQm1G8PcedpLFEEARX3wWI8m4ztganuSGUcq_x5biVKJql3dxfnO0bmHkBOgZ0BBn99TyhgAo0AphULSAzIBocpcKyE_kMko56N-SD6l9DIwnJZ6QtRFlpxtbMx8iG0WfNY_Y-ZCu2qwxa638TVr66bKUxNWmOF6Y_s6dEfko7dNwuPdnZLHq8uH2XW--D6_mV0scidE2efOg5eV0rLSiECZQqgqqxzTnpeAyC31okQhpfZKqmJJhVsWZVV66mQlBJ-SL9vcVQzrDabetHVy2DS2w7BJRkuuNBv-Hciv_yVBCcaYLviIfn6HvoRN7IY_jAJeaFlqNkCwhVwMKUX0ZhXrdpjDADXj5OavyQfP6S7YjqP6aDtXp72RcapBqzE733J16vH3Xrfxl1Gaa2nU_Kf5dnunfnA2N2rg-a6LbZexrp7wT-N_t3kD29ScFg</recordid><startdate>20100810</startdate><enddate>20100810</enddate><creator>TOLEDO, YARON</creator><creator>AGNON, YEHUDA</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20100810</creationdate><title>A scalar form of the complementary mild-slope equation</title><author>TOLEDO, YARON ; AGNON, YEHUDA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-cf1f5d675d7ee1026e1dda6c27f391ee3a0f49e4557f6568b04cb89d9f0c5d443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Boundary conditions</topic><topic>Coastal oceanography, estuaries. Regional oceanography</topic><topic>Differential equations</topic><topic>Earth, ocean, space</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics of the oceans</topic><topic>Refraction</topic><topic>Scalars</topic><topic>Slope stability</topic><topic>surface gravity waves</topic><topic>Vectors (mathematics)</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TOLEDO, YARON</creatorcontrib><creatorcontrib>AGNON, YEHUDA</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TOLEDO, YARON</au><au>AGNON, YEHUDA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A scalar form of the complementary mild-slope equation</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2010-08-10</date><risdate>2010</risdate><volume>656</volume><spage>407</spage><epage>416</epage><pages>407-416</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Mild-slope (MS) type equations are depth-integrated models, which predict under appropriate conditions refraction and diffraction of linear time-harmonic water waves. Among these equations, the complementary mild-slope equation (CMSE) was shown to give better agreement with exact two-dimensional linear theory compared to other MS-type equations. Nevertheless, it has a disadvantage of being a vector equation, i.e. it requires solving a system of two coupled partial differential equations. In addition, for three-dimensional problems, there is a difficulty in constructing the additional boundary condition needed for the solution. In the present work, it is shown how the vector CMSE can be transformed into an equivalent scalar equation using a pseudo-potential formulation. The pseudo-potential mild-slope equation (PMSE) preserves the accuracy of the CMSE while avoiding the need of an additional boundary condition. Furthermore, the PMSE significantly reduces the computational effort relative to the CMSE, since it is a scalar equation. The accuracy of the new model was tested numerically by comparing it to laboratory data and analytical solutions.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112010001850</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2010-08, Vol.656, p.407-416
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_753672185
source Cambridge University Press Journals Complete
subjects Accuracy
Boundary conditions
Coastal oceanography, estuaries. Regional oceanography
Differential equations
Earth, ocean, space
Equivalence
Exact sciences and technology
External geophysics
Geophysics. Techniques, methods, instrumentation and models
Mathematical analysis
Mathematical models
Physics of the oceans
Refraction
Scalars
Slope stability
surface gravity waves
Vectors (mathematics)
Water waves
title A scalar form of the complementary mild-slope equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A30%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20scalar%20form%20of%20the%20complementary%20mild-slope%20equation&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=TOLEDO,%20YARON&rft.date=2010-08-10&rft.volume=656&rft.spage=407&rft.epage=416&rft.pages=407-416&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112010001850&rft_dat=%3Cproquest_cross%3E753672185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=613875972&rft_id=info:pmid/&rft_cupid=10_1017_S0022112010001850&rfr_iscdi=true