A scalar form of the complementary mild-slope equation
Mild-slope (MS) type equations are depth-integrated models, which predict under appropriate conditions refraction and diffraction of linear time-harmonic water waves. Among these equations, the complementary mild-slope equation (CMSE) was shown to give better agreement with exact two-dimensional lin...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2010-08, Vol.656, p.407-416 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 416 |
---|---|
container_issue | |
container_start_page | 407 |
container_title | Journal of fluid mechanics |
container_volume | 656 |
creator | TOLEDO, YARON AGNON, YEHUDA |
description | Mild-slope (MS) type equations are depth-integrated models, which predict under appropriate conditions refraction and diffraction of linear time-harmonic water waves. Among these equations, the complementary mild-slope equation (CMSE) was shown to give better agreement with exact two-dimensional linear theory compared to other MS-type equations. Nevertheless, it has a disadvantage of being a vector equation, i.e. it requires solving a system of two coupled partial differential equations. In addition, for three-dimensional problems, there is a difficulty in constructing the additional boundary condition needed for the solution. In the present work, it is shown how the vector CMSE can be transformed into an equivalent scalar equation using a pseudo-potential formulation. The pseudo-potential mild-slope equation (PMSE) preserves the accuracy of the CMSE while avoiding the need of an additional boundary condition. Furthermore, the PMSE significantly reduces the computational effort relative to the CMSE, since it is a scalar equation. The accuracy of the new model was tested numerically by comparing it to laboratory data and analytical solutions. |
doi_str_mv | 10.1017/S0022112010001850 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753672185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112010001850</cupid><sourcerecordid>753672185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-cf1f5d675d7ee1026e1dda6c27f391ee3a0f49e4557f6568b04cb89d9f0c5d443</originalsourceid><addsrcrecordid>eNp9kEtP20AUhUeolUgDP4CdVQm1G8PcedpLFEEARX3wWI8m4ztganuSGUcq_x5biVKJql3dxfnO0bmHkBOgZ0BBn99TyhgAo0AphULSAzIBocpcKyE_kMko56N-SD6l9DIwnJZ6QtRFlpxtbMx8iG0WfNY_Y-ZCu2qwxa638TVr66bKUxNWmOF6Y_s6dEfko7dNwuPdnZLHq8uH2XW--D6_mV0scidE2efOg5eV0rLSiECZQqgqqxzTnpeAyC31okQhpfZKqmJJhVsWZVV66mQlBJ-SL9vcVQzrDabetHVy2DS2w7BJRkuuNBv-Hciv_yVBCcaYLviIfn6HvoRN7IY_jAJeaFlqNkCwhVwMKUX0ZhXrdpjDADXj5OavyQfP6S7YjqP6aDtXp72RcapBqzE733J16vH3Xrfxl1Gaa2nU_Kf5dnunfnA2N2rg-a6LbZexrp7wT-N_t3kD29ScFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>613875972</pqid></control><display><type>article</type><title>A scalar form of the complementary mild-slope equation</title><source>Cambridge University Press Journals Complete</source><creator>TOLEDO, YARON ; AGNON, YEHUDA</creator><creatorcontrib>TOLEDO, YARON ; AGNON, YEHUDA</creatorcontrib><description>Mild-slope (MS) type equations are depth-integrated models, which predict under appropriate conditions refraction and diffraction of linear time-harmonic water waves. Among these equations, the complementary mild-slope equation (CMSE) was shown to give better agreement with exact two-dimensional linear theory compared to other MS-type equations. Nevertheless, it has a disadvantage of being a vector equation, i.e. it requires solving a system of two coupled partial differential equations. In addition, for three-dimensional problems, there is a difficulty in constructing the additional boundary condition needed for the solution. In the present work, it is shown how the vector CMSE can be transformed into an equivalent scalar equation using a pseudo-potential formulation. The pseudo-potential mild-slope equation (PMSE) preserves the accuracy of the CMSE while avoiding the need of an additional boundary condition. Furthermore, the PMSE significantly reduces the computational effort relative to the CMSE, since it is a scalar equation. The accuracy of the new model was tested numerically by comparing it to laboratory data and analytical solutions.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112010001850</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Accuracy ; Boundary conditions ; Coastal oceanography, estuaries. Regional oceanography ; Differential equations ; Earth, ocean, space ; Equivalence ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Mathematical analysis ; Mathematical models ; Physics of the oceans ; Refraction ; Scalars ; Slope stability ; surface gravity waves ; Vectors (mathematics) ; Water waves</subject><ispartof>Journal of fluid mechanics, 2010-08, Vol.656, p.407-416</ispartof><rights>Copyright © Cambridge University Press 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-cf1f5d675d7ee1026e1dda6c27f391ee3a0f49e4557f6568b04cb89d9f0c5d443</citedby><cites>FETCH-LOGICAL-c449t-cf1f5d675d7ee1026e1dda6c27f391ee3a0f49e4557f6568b04cb89d9f0c5d443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112010001850/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23071762$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>TOLEDO, YARON</creatorcontrib><creatorcontrib>AGNON, YEHUDA</creatorcontrib><title>A scalar form of the complementary mild-slope equation</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Mild-slope (MS) type equations are depth-integrated models, which predict under appropriate conditions refraction and diffraction of linear time-harmonic water waves. Among these equations, the complementary mild-slope equation (CMSE) was shown to give better agreement with exact two-dimensional linear theory compared to other MS-type equations. Nevertheless, it has a disadvantage of being a vector equation, i.e. it requires solving a system of two coupled partial differential equations. In addition, for three-dimensional problems, there is a difficulty in constructing the additional boundary condition needed for the solution. In the present work, it is shown how the vector CMSE can be transformed into an equivalent scalar equation using a pseudo-potential formulation. The pseudo-potential mild-slope equation (PMSE) preserves the accuracy of the CMSE while avoiding the need of an additional boundary condition. Furthermore, the PMSE significantly reduces the computational effort relative to the CMSE, since it is a scalar equation. The accuracy of the new model was tested numerically by comparing it to laboratory data and analytical solutions.</description><subject>Accuracy</subject><subject>Boundary conditions</subject><subject>Coastal oceanography, estuaries. Regional oceanography</subject><subject>Differential equations</subject><subject>Earth, ocean, space</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics of the oceans</subject><subject>Refraction</subject><subject>Scalars</subject><subject>Slope stability</subject><subject>surface gravity waves</subject><subject>Vectors (mathematics)</subject><subject>Water waves</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtP20AUhUeolUgDP4CdVQm1G8PcedpLFEEARX3wWI8m4ztganuSGUcq_x5biVKJql3dxfnO0bmHkBOgZ0BBn99TyhgAo0AphULSAzIBocpcKyE_kMko56N-SD6l9DIwnJZ6QtRFlpxtbMx8iG0WfNY_Y-ZCu2qwxa638TVr66bKUxNWmOF6Y_s6dEfko7dNwuPdnZLHq8uH2XW--D6_mV0scidE2efOg5eV0rLSiECZQqgqqxzTnpeAyC31okQhpfZKqmJJhVsWZVV66mQlBJ-SL9vcVQzrDabetHVy2DS2w7BJRkuuNBv-Hciv_yVBCcaYLviIfn6HvoRN7IY_jAJeaFlqNkCwhVwMKUX0ZhXrdpjDADXj5OavyQfP6S7YjqP6aDtXp72RcapBqzE733J16vH3Xrfxl1Gaa2nU_Kf5dnunfnA2N2rg-a6LbZexrp7wT-N_t3kD29ScFg</recordid><startdate>20100810</startdate><enddate>20100810</enddate><creator>TOLEDO, YARON</creator><creator>AGNON, YEHUDA</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20100810</creationdate><title>A scalar form of the complementary mild-slope equation</title><author>TOLEDO, YARON ; AGNON, YEHUDA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-cf1f5d675d7ee1026e1dda6c27f391ee3a0f49e4557f6568b04cb89d9f0c5d443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Boundary conditions</topic><topic>Coastal oceanography, estuaries. Regional oceanography</topic><topic>Differential equations</topic><topic>Earth, ocean, space</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics of the oceans</topic><topic>Refraction</topic><topic>Scalars</topic><topic>Slope stability</topic><topic>surface gravity waves</topic><topic>Vectors (mathematics)</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TOLEDO, YARON</creatorcontrib><creatorcontrib>AGNON, YEHUDA</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TOLEDO, YARON</au><au>AGNON, YEHUDA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A scalar form of the complementary mild-slope equation</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2010-08-10</date><risdate>2010</risdate><volume>656</volume><spage>407</spage><epage>416</epage><pages>407-416</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Mild-slope (MS) type equations are depth-integrated models, which predict under appropriate conditions refraction and diffraction of linear time-harmonic water waves. Among these equations, the complementary mild-slope equation (CMSE) was shown to give better agreement with exact two-dimensional linear theory compared to other MS-type equations. Nevertheless, it has a disadvantage of being a vector equation, i.e. it requires solving a system of two coupled partial differential equations. In addition, for three-dimensional problems, there is a difficulty in constructing the additional boundary condition needed for the solution. In the present work, it is shown how the vector CMSE can be transformed into an equivalent scalar equation using a pseudo-potential formulation. The pseudo-potential mild-slope equation (PMSE) preserves the accuracy of the CMSE while avoiding the need of an additional boundary condition. Furthermore, the PMSE significantly reduces the computational effort relative to the CMSE, since it is a scalar equation. The accuracy of the new model was tested numerically by comparing it to laboratory data and analytical solutions.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112010001850</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2010-08, Vol.656, p.407-416 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_753672185 |
source | Cambridge University Press Journals Complete |
subjects | Accuracy Boundary conditions Coastal oceanography, estuaries. Regional oceanography Differential equations Earth, ocean, space Equivalence Exact sciences and technology External geophysics Geophysics. Techniques, methods, instrumentation and models Mathematical analysis Mathematical models Physics of the oceans Refraction Scalars Slope stability surface gravity waves Vectors (mathematics) Water waves |
title | A scalar form of the complementary mild-slope equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A30%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20scalar%20form%20of%20the%20complementary%20mild-slope%20equation&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=TOLEDO,%20YARON&rft.date=2010-08-10&rft.volume=656&rft.spage=407&rft.epage=416&rft.pages=407-416&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112010001850&rft_dat=%3Cproquest_cross%3E753672185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=613875972&rft_id=info:pmid/&rft_cupid=10_1017_S0022112010001850&rfr_iscdi=true |