A scalar form of the complementary mild-slope equation

Mild-slope (MS) type equations are depth-integrated models, which predict under appropriate conditions refraction and diffraction of linear time-harmonic water waves. Among these equations, the complementary mild-slope equation (CMSE) was shown to give better agreement with exact two-dimensional lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2010-08, Vol.656, p.407-416
Hauptverfasser: TOLEDO, YARON, AGNON, YEHUDA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mild-slope (MS) type equations are depth-integrated models, which predict under appropriate conditions refraction and diffraction of linear time-harmonic water waves. Among these equations, the complementary mild-slope equation (CMSE) was shown to give better agreement with exact two-dimensional linear theory compared to other MS-type equations. Nevertheless, it has a disadvantage of being a vector equation, i.e. it requires solving a system of two coupled partial differential equations. In addition, for three-dimensional problems, there is a difficulty in constructing the additional boundary condition needed for the solution. In the present work, it is shown how the vector CMSE can be transformed into an equivalent scalar equation using a pseudo-potential formulation. The pseudo-potential mild-slope equation (PMSE) preserves the accuracy of the CMSE while avoiding the need of an additional boundary condition. Furthermore, the PMSE significantly reduces the computational effort relative to the CMSE, since it is a scalar equation. The accuracy of the new model was tested numerically by comparing it to laboratory data and analytical solutions.
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112010001850