Numerical Simulation of Smoke Flow and its Effect during Railway Tunnel Fire
The physical and mathematical turbulence flow fields models are set up to numerically simulate railway tunnel fire and smoke flow. An experimental fire simulation results in railway tunnel indicate that the temperature distribution of laminar flame, the smoke concentration and flow velocity can be e...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2010-01, Vol.439-440, p.1444-1449 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The physical and mathematical turbulence flow fields models are set up to numerically simulate railway tunnel fire and smoke flow. An experimental fire simulation results in railway tunnel indicate that the temperature distribution of laminar flame, the smoke concentration and flow velocity can be expressed by the fully developed smoke flow downwind. Through numerical simulation, it is concluded that the turbulent flow field models are better and have good consistency with the experimental results. The phenomenon of tunnel fire, the development and distribution of smoke flow can not only provide great support on the fire protecting and ventilation plan, but also give better reference to the pedestrian evacuation and the design of disaster prevention and mitigation. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.439-440.1444 |