Measuring surface pressure with far field acoustics
This paper presents measurements of the wavenumber frequency spectrum of wall pressure fluctuations under a turbulent boundary layer made using sound radiated from hydrodynamically smooth ridges in the surface. The measurements also serve as a test of the scattering theory of roughness noise. The ra...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2010-09, Vol.329 (19), p.3958-3971 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents measurements of the wavenumber frequency spectrum of wall pressure fluctuations under a turbulent boundary layer made using sound radiated from hydrodynamically smooth ridges in the surface. The measurements also serve as a test of the scattering theory of roughness noise. The radiated sound reveals a cut through the full three-dimensional wavenumber frequency spectrum of the wall pressure at the wavenumber of the surface. Since ridges can be made with very small wavelengths, this technique can be used to probe the structure of the wall pressure spectrum on scales far smaller than those that can be reached using conventional wall-mounted transducers. Furthermore, the method reveals the wavenumber frequency spectrum directly, without the need for multi-point measurements or the spatial Fourier transforming of data. Measured spectra bear a close similarity to Corcos’ and Chase's model forms, and confirm the applicability of the theory of roughness noise and its prediction of roughness noise directivity. |
---|---|
ISSN: | 0022-460X 1095-8568 |
DOI: | 10.1016/j.jsv.2010.03.012 |