Ag and Ag–Mn nanowire catalysts for alkaline fuel cells

Low loadings of Ag and Ag–Mn nanowire catalysts were applied to the surface of a CNT-base electrode. The catalyzed electrodes had a 60 mV larger onset potential and promoted the ORR via the direct 4 electron pathway. The Ag/CNT, Ag–Mn/CNT, and CNT samples produced a Tafel slope of about 70 mV/decade...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2010-06, Vol.35 (11), p.5666-5672
Hauptverfasser: Kostowskyj, M.A., Kirk, D.W., Thorpe, S.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low loadings of Ag and Ag–Mn nanowire catalysts were applied to the surface of a CNT-base electrode. The catalyzed electrodes had a 60 mV larger onset potential and promoted the ORR via the direct 4 electron pathway. The Ag/CNT, Ag–Mn/CNT, and CNT samples produced a Tafel slope of about 70 mV/decade which confirmed the ORR activation was limited by the migration of oxygen molecules to active surface sites. The catalytic performance of the Ag and Ag–Mn nanowires was also comparable to that of a bulk catalyst but at a much lower loading. Electrochemical test results showed that the Ag and Ag–Mn catalysts exhibited similar performance. The Ag–Mn nanowire catalysts were synthesized using a unique electroless deposition procedure to co-deposit Ag and Mn. ICP confirmed that 2 to 9 at% Mn was present in the nanowires. XPS and XRD analysis showed that the Ag–Mn nanowires were composed of Mn in solid solution with Ag and a thin surface layer containing MnO and MnO 2. The Ag–Mn nanowires were expected to be the most active. The equivalent performance between Ag and Ag–Mn samples was attributed to the presence of inactive MnO and low concentrations of MnO 2 in the nanowires. Although MnO 2 is known to be active towards the ORR, the dominant Mn species in the nanowires was MnO.
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2010.02.125