On the spectral characterizations of ∞ -graphs
A ∞ -graph is a graph consisting of two cycles with just a vertex in common. We first look for some invariants for cospectral graphs, then we introduce a new method to determine the degree sequence of cospectral mates of a graph. In this paper, we prove that all ∞ -graphs without triangles are deter...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2010-07, Vol.310 (13), p.1845-1855 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
∞
-graph is a graph consisting of two cycles with just a vertex in common. We first look for some invariants for cospectral graphs, then we introduce a new method to determine the degree sequence of cospectral mates of a graph. In this paper, we prove that all
∞
-graphs without triangles are determined by their Laplacian spectra and that all
∞
-graphs, with one exception, are determined by their signless Laplacian spectra. For the exception we determine all graphs that are cospectral (w.r.t. signless Laplacian spectrum) to it. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2010.01.021 |