Traffic locality characteristics in a parallel forwarding system

Due to the widening gap between the performance of microprocessors and that of memory, using caches in a system to take advantage of locality in its workload has become a standard approach to improve overall system performance. At the same time, many performance problems finally reduce to cache perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of communication systems 2003-11, Vol.16 (9), p.823-839
Hauptverfasser: Shi, W., MacGregor, M. H., Gburzynski, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the widening gap between the performance of microprocessors and that of memory, using caches in a system to take advantage of locality in its workload has become a standard approach to improve overall system performance. At the same time, many performance problems finally reduce to cache performance issues. Locality in system workload is the fact that makes caching possible. In this paper, we first use the reuse distance model to characterize temporal locality in Internet traffic. We develop a model that closely matches the empirical data. We then extend the work to investigate temporal locality in the workload of multi‐processor forwarding systems by comparing locality under different packet scheduling schemes. Our simulations show that for systems with hash‐based schedulers, caching can be an effective way to improve forwarding performance. Based on flow‐level traffic characteristics, we further discuss the relationship between load‐balancing and hash‐scheduling, which yields insights into system design. Copyright © 2003 John Wiley & Sons, Ltd.
ISSN:1074-5351
1099-1131
DOI:10.1002/dac.619