Receptor-mediated internalization of pseudomonas toxin by mouse fibroblasts

Pseudomonas exotoxin (PE) was used as a probe to study the mechanism by which protein ligands are internalized by mammalian cells. Both biochemical and electron microscopic methods were used to look at the internalization of PE by mouse LM cell fibroblasts. Our data suggest that PE enters cells by r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 1980-10, Vol.21 (3), p.867-873
Hauptverfasser: Fitzgerald, David, Morris, Randal E., Saelinger, Catharine B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pseudomonas exotoxin (PE) was used as a probe to study the mechanism by which protein ligands are internalized by mammalian cells. Both biochemical and electron microscopic methods were used to look at the internalization of PE by mouse LM cell fibroblasts. Our data suggest that PE enters cells by receptor-mediated endocytosis, a process previously thought to be restricted to the entry of biologically significant molecules such as lysosomal enzymes and peptide hormones. Biochemical studies showed that methylamine (20 mM) and chloroquine (10 μM) protected LM cells from the action of PE. Full protection was observed if methylamine or chloroquine was added to the monolayers simultaneously with toxin or if they were added up to 10 min after toxin binding. Later addition of amine or chloroquine afforded partial protection to the monolayers. With immunoelectron microscopy we observed that in the cold toxin bound diffusely to the cell surface but was rapidly internalized when cells were warmed to 37°C. In the presence of methylamine, chloroquine or ammonium chloride, internalization did not occur. We propose that PE enters mouse fibroblasts by receptor-mediated endocytosis and that chloroquine and methylamine, agents which are known to block this process, prevent expression of toxicity.
ISSN:0092-8674
1097-4172
DOI:10.1016/0092-8674(80)90450-X