G1 and S phase mammalian cells synthesize histones at equivalent rates

To determine the effect of cell cycle position on protein synthesis, synchronized cell populations were metabolically labeled and the synthesis of the basic proteins, including histones, was examined by two-dimensional gel electrophoresis. Exponentially growing S49 mouse lymphoma or Chinese hamster...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 1980-08, Vol.21 (1), p.195-204
Hauptverfasser: Groppi, Vincent E., Coffino, Philip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To determine the effect of cell cycle position on protein synthesis, synchronized cell populations were metabolically labeled and the synthesis of the basic proteins, including histones, was examined by two-dimensional gel electrophoresis. Exponentially growing S49 mouse lymphoma or Chinese hamster ovary (CHO) cells were separated into G1 and S phase populations by centrifugal elutriation, selective mitotic detachment, fluorescence-activated cell sorting, or a combination of these, and pulse-labeled with radiolabeled amino acids. The histone proteins, both free and chromatin-bound, were completely resolved from some 300 other basic polypeptides in whole-cell lysates by a modification of the NEPHGE technique of O'Farrell, Goodman and O'Farrell (1977). Comparisons of matched autoradiograms from samples of G1 and S phase labeled cells revealed an equivalent rate of histone synthesis through the cell cycle of both S49 and CHO cells. Nuclei isolated from G1 phase S49 cells that were pulse-labeled contained between 13 and 15% of the newly synthesized nucleosomal histones present in S phase nuclei. Nuclei prepared from G1 phase cells that were pulse-labeled and then chased for 5 hr contained more than 90% of the labeled nucleosomal histones present in wholecell lysates. It therefore seems likely that differential alterations in the rate of histone synthesis do not occur to a significant degree as cells proceed through the cycle, but the association of newly synthesized histones with DNA takes place after the onset of DNA replication.
ISSN:0092-8674
1097-4172
DOI:10.1016/0092-8674(80)90127-0