Subcellular localization of 3-methylcrotonyl-coenzyme A carboxylase in bovine kidney
The intracellular localization of 3-methylcrotonyl-CoA carboxylase (MCase), an enzyme of the leucine oxidative pathway, was studied in bovine kidney. Differential centrifugation of kidney homogenates demonstrated that the majority of the enzyme was associated with the mitochondrial and cytosolic fra...
Gespeichert in:
Veröffentlicht in: | Archives of biochemistry and biophysics 1980, Vol.199 (1), p.28-36 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The intracellular localization of 3-methylcrotonyl-CoA carboxylase (MCase), an enzyme of the leucine oxidative pathway, was studied in bovine kidney. Differential centrifugation of kidney homogenates demonstrated that the majority of the enzyme was associated with the mitochondrial and cytosolic fractions. Isopycnic centrifugation of the mitochondrial fraction demonstrated cofractionation of MCase with mitochondrial markers, but not with lysosomal markers, consistent with a mitochondrial location for the enzyme. Using different homogenization techniques and comparing the fractional extraction of MCase and mitochondrial and cytosolic marker enzymes, the appearance of MCase in the “cytosolic” fraction was shown to be due to mitochondrial damage. The intramitochondrial distribution of MCase was determined using a digitonin procedure, and indicated that the enzyme is associated with the inner mitochondrial membrane. Although a fraction of MCase (30–40%) was “solubilized” by homogenization of whole mitochondria, the remaining MCase (60–70%) was tightly associated with the mitochondrial membrane fraction. Release and “solubilization” of this latter fraction was achieved by polyethylene glycol treatment. The “solubilized” MCase was stabilized in a glycerol-containing buffer. |
---|---|
ISSN: | 0003-9861 1096-0384 |
DOI: | 10.1016/0003-9861(80)90252-0 |