Kinetics of the Hydrolysis of Atmospherically Relevant Isoprene-Derived Hydroxy Epoxides

Isoprene (the most abundant nonmethane hydrocarbon emitted into the atmosphere) is known to undergo oxidation to 2-methyl-1,2,3,4-butanetetraol, a hydrophilic compound present in secondary organic aerosol (SOA) in the atmosphere. Recent laboratory work has shown that gas phase hydroxy epoxides are p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2010-09, Vol.44 (17), p.6718-6723
Hauptverfasser: Cole-Filipiak, Neil C, O’Connor, Alison E, Elrod, Matthew J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Isoprene (the most abundant nonmethane hydrocarbon emitted into the atmosphere) is known to undergo oxidation to 2-methyl-1,2,3,4-butanetetraol, a hydrophilic compound present in secondary organic aerosol (SOA) in the atmosphere. Recent laboratory work has shown that gas phase hydroxy epoxides are produced in the low NO x photooxidation of isoprene and that these epoxides are likely to undergo efficient acid-catalyzed hydrolysis on SOA to 2-methyl-1,2,3,4-butanetetraol at typical SOA acidities. In order to confirm this hypothesis, the specific hydroxy epoxides observed in the isoprene photooxidation experiment (as well as several other related species) were synthesized, and the hydrolysis kinetics of all species were studied via nuclear magnetic resonance (NMR) techniques. It was determined that the isoprene-derived hydroxy epoxides should undergo efficient hydrolysis under atmospheric conditions, particular on lower pH SOA. An empirical structure−reactivity model was constructed that parametrized the hydrolysis rate constants according to the carbon substitution pattern on the epoxide ring and number of neighboring hydroxy functional groups. Compared to the previously studied similar nonfunctionalized epoxides, the presence of a hydroxy group at the α position to the epoxy group was found to reduce the hydrolysis rate constant by a factor of 20, and the presence of a hydroxy group at the beta position to the epoxy group was found to reduce the hydrolysis rate constant by a factor of 6.
ISSN:0013-936X
1520-5851
DOI:10.1021/es1019228