Cell transplantation for myocardial injury: a preliminary comparative study
Abstract Background aims Cell transplantation may restore viable muscle after myocardial infarction. Because many studies have focused on one cell type, we compared the characteristics of skeletal myoblasts (SKM), bone marrow stromal/stem cells (BMSC) and smooth muscle cells (SMC) and their effects...
Gespeichert in:
Veröffentlicht in: | Cytotherapy (Oxford, England) England), 2010-09, Vol.12 (5), p.692-700 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Background aims Cell transplantation may restore viable muscle after myocardial infarction. Because many studies have focused on one cell type, we compared the characteristics of skeletal myoblasts (SKM), bone marrow stromal/stem cells (BMSC) and smooth muscle cells (SMC) and their effects on cardiac function after myocardial injury. Methods In vitro cell characteristics, including proliferation, hypoxic survival and vascular endothelial cell growth factor (VEGF) expression, of SKM, BMSC and SMC were compared. An in vivo left anterior descending artery ligation rat model was used, and cells were implanted into the infarct ( n = 16 per cell type). Cell survival was determined by PKH26 staining and real-time polymerase chain reaction (PCR). Cardiac function, tissue VEGF and stem cell factor (SCF) expression and vasculogenesis were evaluated. Results Although cell morphologies were distinct, in vitro proliferation was similar. In vitro studies showed that SKM had the highest hypoxic survival, whereas BMSC had the lowest hypoxic survival but the highest VEGF expression. After implantation, SKM showed the highest overall survival and in vivo SCF expression, and both SMC and SKM expressed the highest VEGF levels. Vasculogenesis was significantly ( P < 0.001) improved after transplantation of each cell type. Overall, BMSC and SKM promoted the greatest improvement in cardiac function. Conclusions SKM, BMSC and SMC expressed VEGF and SCF and promoted vasculogenesis. Although BMSC showed the greatest regenerative potential relative to cell survival and growth factor expression, the greatest improvement in cardiac function was observed with BMSC and SKM. |
---|---|
ISSN: | 1465-3249 1477-2566 |
DOI: | 10.3109/14653241003786130 |