Na(+) and Ca(2+) effect on the hydration and orientation of the phosphate group of DPPC at air-water and air-hydrated silica interfaces
Hydration and orientation of the phosphate group of dipalmitoylphosphatidylcholine (DPPC) monolayers in the liquid-expanded (LE) phase and the liquid-condensed (LC) phase in the presence of sodium ions and calcium ions was investigated with vibrational sum frequency generation (SFG) spectroscopy at...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2010-07, Vol.114 (29), p.9485-9495 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydration and orientation of the phosphate group of dipalmitoylphosphatidylcholine (DPPC) monolayers in the liquid-expanded (LE) phase and the liquid-condensed (LC) phase in the presence of sodium ions and calcium ions was investigated with vibrational sum frequency generation (SFG) spectroscopy at the air-aqueous interface in conjunction with surface pressure measurements. In the LE phase, both sodium and calcium affect the phosphate group hydration. In the LC phase, however, sodium ions affect the phosphate hydration subtly, while calcium ions cause a marked dehydration. Silica-supported DPPC monolayers prepared by the Langmuir-Blodgett method reveal similar hydration behavior relative to that observed in the corresponding aqueous subphase for the case of water and in the presence of sodium ions. However, in the presence of calcium ions the phosphate group dehydration is greater than that from the corresponding purely aqueous CaCl(2) subphase. The average tilt angles from the surface normal of the PO(2)(-) group of DPPC monolayers on the water surface and on the silica substrate calculated from SFG data are found to be 59 degrees +/- 3 degrees and 72 degrees +/- 5 degrees , respectively. Orientation of the phosphate group is additionally affected by the presence of ions. These findings show that extrapolation of results obtained from model membranes from liquid surfaces to solid supports may not be warranted since there are differences in headgroup organization on the two subphases. |
---|---|
ISSN: | 1520-5207 |
DOI: | 10.1021/jp1022357 |