Characterization of Gold Nanoparticles Modified with Single-Stranded DNA Using Analytical Ultracentrifugation and Dynamic Light Scattering

We report the characterization of gold nanoparticles modified with thiol-terminated single stranded DNA (ssDNA) using analytical ultracentrifugation. Dynamic light scattering was used to measure the diameter of bare and ssDNA modified gold nanoparticles to corroborate the predictions of our models....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2010-08, Vol.26 (15), p.12740-12747
Hauptverfasser: Falabella, James B, Cho, Tae Joon, Ripple, Dean C, Hackley, Vincent A, Tarlov, Michael J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the characterization of gold nanoparticles modified with thiol-terminated single stranded DNA (ssDNA) using analytical ultracentrifugation. Dynamic light scattering was used to measure the diameter of bare and ssDNA modified gold nanoparticles to corroborate the predictions of our models. Sedimentation coefficients of nominally 10 and 20 nm diameter gold nanoparticles modified with thiol-terminated thymidine homo-oligonucleotides, 5−30 bases in length, were determined with analytical ultracentrifugation. The sedimentation coefficients of gold nanoparticles modified with ssDNA were found to decrease with increasing coverage of ssDNA and increasing length of ssDNA. The sedimentation coefficients of ssDNA modified gold particles were most closely predicted when the strands were modeled as fully extended chains (FEC). Apparent particle densities of bare gold nanoparticles calculated from measured sedimentation coefficients decreased significantly below that of bulk gold with decreasing size of nanoparticles. This finding suggests that hydration layer effects are an important factor in the sedimentation behavior for both bare and short ssDNA chain modified gold particles.
ISSN:0743-7463
1520-5827
DOI:10.1021/la100761f