Enhancing the Magnetoviscosity of Ferrofluids by the Addition of Biological Nanotubes

Applying a magnetic field to many ferrofluids leads to a significant increase in viscosity, but the phenomenon has yet to find technological exploitation because of the thinning caused by even weak shear flows. We have discovered that the addition of plant-virus-derived nanotubes to a commercial fer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2010-08, Vol.4 (8), p.4531-4538
Hauptverfasser: Wu, Zhenyu, Mueller, Anna, Degenhard, Sven, Ruff, S. Emil, Geiger, Fania, Bittner, Alexander M, Wege, Christina, Krill III, Carl E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Applying a magnetic field to many ferrofluids leads to a significant increase in viscosity, but the phenomenon has yet to find technological exploitation because of the thinning caused by even weak shear flows. We have discovered that the addition of plant-virus-derived nanotubes to a commercial ferrofluid can give rise to a dramatic enhancement in magnetoviscosity and a suppression of shear thinning. The dependence of this effect on nanotube aspect ratio and surface charge, both of which were varied biotechnologically, is consistent with a “scaffolding” of magnetic particles into quasi-linear arrays. Direct support for this explanation is derived from transmission electron micrographs, which reveal a marked tendency for the magnetic nanoparticles to decorate the outside surface of the virus nanotubes.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn100645e